Sabtu, 19 Oktober 2013

BAHAN PENCELUP DAN PEWARNA

BAHAN PEWARNA DAN PENCELUP
Pengertian Pencelupan Tekstil
l  Pencelupan adalah suatu proses pemberian warna pada bahan tekstil secara merata dan baik, sesuai dengan warna yang diinginkan. Sebelum pencelupan dilakukan maka harus dipilih zat warna yang sesuai dengan serat.
l  Pencelupan pada umumnya terdiri dari melarutkan atau mendispersikan zat warna dalam air atau medium lain, kemudian memasukkan bahan tekstil kedalam larutan tersebut sehingga terjadi penyerapan zat warna kedalam serat. Penyerapan zat warna kedalam serat merupakan suatu reaksi eksotermik dan reaksi kesetimbangan. Beberapa zat pembantu misalnya garam, asam, alkali atau lainnya ditambahkan kedalam larutan celup dan kemudian pencelupan diteruskan hingga diperoleh warna yang dikehendaki
B.      Gaya – gaya ikat pada pencelupan

Agar pencelupan dan hasil celupan lebih baik dan tahan cuci, maka gaya ikatan antara zat warna dengan serat harus lebih besar daripada gaya – gaya yang bekerja antara zat warna dengan air. Pada dasarnya dalam pencelupan terdapat empat jenis gaya ikatan yang menyebabkan adanya daya serap yaitu ;
Ø   Ikatan Hidrogen
Merupakan ikatan sekunder yang terbentuk karena atom hidrogen pada gugus hidroksil atau amina mengadakan ikatan yang lemah dengan atom lainnya.
Contoh : zat warna direk, naftol, dispersi.
Ø   Ikatan Elektrovalen
Ikatan antara zat warna dengan serat yang kedua merupakan ikatan yang timbul karena gaya tarik menarik antara muatan yang berlawanan.
Contoh : Zat warna asam, zat warna basa
B.      Gaya – gaya ikat pada pencelupan

Agar pencelupan dan hasil celupan lebih baik dan tahan cuci, maka gaya ikatan antara zat warna dengan serat harus lebih besar daripada gaya – gaya yang bekerja antara zat warna dengan air. Pada dasarnya dalam pencelupan terdapat empat jenis gaya ikatan yang menyebabkan adanya daya serap yaitu ;
Ø   Ikatan Hidrogen
Merupakan ikatan sekunder yang terbentuk karena atom hidrogen pada gugus hidroksil atau amina mengadakan ikatan yang lemah dengan atom lainnya. Contoh : zat warna direk, naftol, dispersi.
Ø   Ikatan Elektrovalen
Ikatan antara zat warna dengan serat yang kedua merupakan ikatan yang timbul karena gaya tarik menarik antara muatan yang berlawanan. Contoh : Zat warna asam, zat warna basa.
C. Proses Pencelupan Tekstil

Proses persiapan pencelupan meliputi pelarutan zat warna, penggunaan air dan zat pelunak air yang dipakai, persiapan bahan, pemasakan, pengelantangan.
Metode-metode pencelupan bahan tekstil antara lain :
Ø  Metode pencelupan, Mc Winch, Jet/ over flow, package, dan beam.
1. Metode normal proses, penambahan garam               secara bertahap.
2. Metode all – in proses.
3. Metode migrasi proses.
4. Metode isotermal proses.
Ø  Metode pencelupan cara jigger
Ø  Metode pencelupan cara pad – batch
Teknik pencelupan lainnya adalah sistem kontinyu atau semi kontinyu, exhoution, teknik migrasi, cara carrier atau pengemban, cara HT/HP atau tekanan dan suhu tinggi, cara thermosol, dengan pelarut organik, dengan larutan celup tuggal/ ganda, cara satu bejana celup, dengan pemeraman, dan sebagainya.
Sebelum dilakukan pencelupan maka bahan tekstil harus dilakukan pretreatment terlebih dahulu supaya hasil celup sempurna.
Diantara proses tersebut adalah :
Ø  Singieng : Menghilangkan bulu – bulu yang timbul pada benang atau kain akibat gesekan – gesekan yang terjadi pada proses pertenunan,
Ø  Dezising : Menghilangkan zat – zat kanji yang melapisi permukaan kain atau benang, sehingga dengan hilangnya kanji tersebut penyerapan obat – obat kimia kedalam kain tidak terhalang.
Ø  Scouring : Menghilangkan pectin, lilin, lemak dan kotoran atau debu – debu yang ada pada serat kapas.
Bleaching : Menghilangkan zat – zat pigmen warna dalam serat yang tidak bisa hilang pada saat proses scouring, sehingga warna bahan menjadi lebih putih bersih dan tidak mempengaruhi hasil warna pada saat proses pencelupan dan pemutihan optical.
Mercerizing : Memberikan penampang serat yang lebih bulat dengan melepaskan putaran serat atau reorientasi dari rantai – rantai molekul selulosa menyebabkan deretan kristalin yang lebih sejajar dan teratur.
Proses pewarnaan pada bahan tekstil pada umumnya meliputi proses berikut ini :
a. Pencelupan
b. Pencapan
c. Proses pewarnaan


Proses pencelupan dapat dilakukan pada bahan tekstil baik masih berupa serat, benang ataupun kain. Pencelupan pada serat biasanya dilakukan untuk menghasilkan motif atau komposisi warna .Pencelupan pada benang dilakukan untuk memberi warna pada benang dan jika benang tersebut ditenun akan menghasilkan kain yang memiliki komposisi warna /corak tertentu dari susunan dan persilangan benang lusi dan pakan. Pencelupan pada kain dilakukan untuk mewarnai kain secara merata dengan warna yang sama pada seluruh kain.
Proses pencapan pada bahan tekstil dapat dilakukan pada benang atau kain. Pada proses pencapan diperlukan pasta cap yang terdiri dari zat warna, pengental dan zat zat pembantu yang tergantung pada jenis serat dan jenis zat warna yang digunakan.
Berdasarkan alat atau mesin yang digunakan, pencapan digolongkan sebagai berikut:
l  a. Pencapan semprot (Spray printing)
l  b. Pencapan Blok (Block Printing)
l  c. Pencapan Penotine (penotine printing)
l  d. Pencapan bulu (Flock Printing)
l  e. Pencapan kasa (Screen Printing)
l  f. Pencapan Rotary (Rotary Printing)
l  g. Pencapan Rol (Roller Printing)
l  h. Pencapan transfer (Tranfer printing)
Vickerstaf menyimpulkan bahwa dalam pencelupan terjadi tiga tahap, yaitu :
Tahap pertama merupakan molekul zat warna dalam larutan yang selalu bergerak, pada suhu tinggi gerakan molekul cepat. Kemudian bahan tekstil dimasukkan kedalam larutan celup. Serat tekstil dalam larutan bersifat negatif pada permukaannya sehingga dalam tahap ini terdapat dua kemungkinan yakni molekul zat warna akan tertarik oleh serat atau tertolak menjauhi serat. Oleh karena itu perlu penambahan zat – zat pembantu untuk mendorong zat warna lebih mudah mendekati permukaan serat. Peristiwa tahap pertama tersebut sering disebut difusi zat warna dalam larutan.
Dalam tahap kedua molekul zat warna yang mempunyai tenaga cukup besar dapat mengatasi gaya – gaya tolak dari permukaan serat, sehingga molekul zat warna tersebut dapat terserap menempel pada permukaan serat. Peristiwa ini disebut adsorpsi.
Tahap ketiga yang merupakan bagian yang terpenting dalam pencelupan adalah penetrasi atau difusi zat warna dari permukaan serat kepusat. Tahap ketiga merupakan proses yang paling lambat sehingga dipergunakan sebagai ukuran menentukan kecepatan celup.


D.Tujuan Pencelupan

Dalam pencelupan mempunyai tujuan – tujuan dan sasaran yang hendak dicapai antara lain :
l  Kerataan hasil pencelupan
l  1. Keadaan bahan sebelum celup
l  · Bebas dari minyak
l  · Scouring/ Bleaching yang merata
l  · Hasil merserisasi yang merata
l  · Bahan tidak kusut
l  · Tidak terjadi kostiksasi setempat
l  · Penempatan bahan dalam mesin yang rapi
Zat Warna
l  1.      Klasifikasi Zat Warna
Zat warna dapat digolongkan menurut cara diperolehnya, yaitu zat warna alam dan zat warna sintetik. Berdasarkan sifat pencelupannya, zat warna dapat digolongkan sebagai zat warna substantif, yaitu zat warna yang langsung dapat mewarnai serat dan zat warna ajektif, yaitu zat warna yang memerlukan zat pembantu pokok untuk dapat mewarnai serat. Berdasarkan warna yang ditimbulkan zat warna digongkan menjadi zat warna monogenetik yaitu zat warna yang hanya memberikan arah satu warna dan zat warna poligenetik yaitu zat warna yang memberikan beberapa arah warna. Penggolongan lainnya adalah berdasarkan susunan kimia atau inti zat warna tersebut, yaitu zat warna – nitroso, mordan, belerang, bejana, naftol, dispersi dan reaktif.
 2.      Syarat-syarat Zat Warna
Yang dimaksud dengan zat warna ialah semua zat berwarna yang mempunyai kemampuan untuk dicelupkan pada serat tekstil dan memiliki sifat ketahanan luntur warna (permanent). Jadi sesuatu zat dapat berlaku sebagai zat warna, apabila :
-          Zat warna tersebut mempunyai gugus yang dapat menimbulkan warna(chromofor), misalnya : nitro, nitroso, dan sebagainya.
-          Zat warna tersebut mempunyai gugus yang dapat mempunyai afinitas terhadap serat tekstil auxsochrom misalnya amino, hidroksil dan sebagainya

Pada dasarnya cara pemberian nama suatu zat warna mengandung 3 pengertian pokok, yaitu :
l  a.Nama pokok, yang menunjukkan golongan zat warna dan pabrik pembuatnya, misalnya Procion, adalah zat warna reaktif buatan I.C.I.
l  b.Warna, yang menunjukkan warna dari zat warna tersebut, misalnya Yellow, Red dan sebagainya.
l  c.Satu atau lebih huruf/angka yang menunjukkan arah warna, konsentrasi, mutu atau cara pamakaiannya, misalnya M X R, yang berarti :
l  M – jenis zat warna Procion dingin
l  X – pemakaian dengan cara perendaman (exhaustion)
l  R – arah warna kemerahan
Sumber:
-Lubis, Arifin, S.Teks., dkk. 1998. Teknologi Pencapan Tekstil. Bandung: STTT
-Sunarto. 2008. Teknologi Pencelupan dan Pengecapan Jilid 1 untuk SMK. Jakarta : Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional.
-Teknologi Pencelupan dan Pengecapan Jilid 3 untuk SMK. Jakarta : Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional.
-http : // chem-is try.org



BAHAN PEWARNA DAN PENCELUP
Pengertian Pencelupan Tekstil
l  Pencelupan adalah suatu proses pemberian warna pada bahan tekstil secara merata dan baik, sesuai dengan warna yang diinginkan. Sebelum pencelupan dilakukan maka harus dipilih zat warna yang sesuai dengan serat.
l  Pencelupan pada umumnya terdiri dari melarutkan atau mendispersikan zat warna dalam air atau medium lain, kemudian memasukkan bahan tekstil kedalam larutan tersebut sehingga terjadi penyerapan zat warna kedalam serat. Penyerapan zat warna kedalam serat merupakan suatu reaksi eksotermik dan reaksi kesetimbangan. Beberapa zat pembantu misalnya garam, asam, alkali atau lainnya ditambahkan kedalam larutan celup dan kemudian pencelupan diteruskan hingga diperoleh warna yang dikehendaki
B.      Gaya – gaya ikat pada pencelupan

Agar pencelupan dan hasil celupan lebih baik dan tahan cuci, maka gaya ikatan antara zat warna dengan serat harus lebih besar daripada gaya – gaya yang bekerja antara zat warna dengan air. Pada dasarnya dalam pencelupan terdapat empat jenis gaya ikatan yang menyebabkan adanya daya serap yaitu ;
Ø   Ikatan Hidrogen
Merupakan ikatan sekunder yang terbentuk karena atom hidrogen pada gugus hidroksil atau amina mengadakan ikatan yang lemah dengan atom lainnya.
Contoh : zat warna direk, naftol, dispersi.
Ø   Ikatan Elektrovalen
Ikatan antara zat warna dengan serat yang kedua merupakan ikatan yang timbul karena gaya tarik menarik antara muatan yang berlawanan.
Contoh : Zat warna asam, zat warna basa
B.      Gaya – gaya ikat pada pencelupan

Agar pencelupan dan hasil celupan lebih baik dan tahan cuci, maka gaya ikatan antara zat warna dengan serat harus lebih besar daripada gaya – gaya yang bekerja antara zat warna dengan air. Pada dasarnya dalam pencelupan terdapat empat jenis gaya ikatan yang menyebabkan adanya daya serap yaitu ;
Ø   Ikatan Hidrogen
Merupakan ikatan sekunder yang terbentuk karena atom hidrogen pada gugus hidroksil atau amina mengadakan ikatan yang lemah dengan atom lainnya. Contoh : zat warna direk, naftol, dispersi.
Ø   Ikatan Elektrovalen
Ikatan antara zat warna dengan serat yang kedua merupakan ikatan yang timbul karena gaya tarik menarik antara muatan yang berlawanan. Contoh : Zat warna asam, zat warna basa.
C. Proses Pencelupan Tekstil

Proses persiapan pencelupan meliputi pelarutan zat warna, penggunaan air dan zat pelunak air yang dipakai, persiapan bahan, pemasakan, pengelantangan.
Metode-metode pencelupan bahan tekstil antara lain :
Ø  Metode pencelupan, Mc Winch, Jet/ over flow, package, dan beam.
1. Metode normal proses, penambahan garam               secara bertahap.
2. Metode all – in proses.
3. Metode migrasi proses.
4. Metode isotermal proses.
Ø  Metode pencelupan cara jigger
Ø  Metode pencelupan cara pad – batch
Teknik pencelupan lainnya adalah sistem kontinyu atau semi kontinyu, exhoution, teknik migrasi, cara carrier atau pengemban, cara HT/HP atau tekanan dan suhu tinggi, cara thermosol, dengan pelarut organik, dengan larutan celup tuggal/ ganda, cara satu bejana celup, dengan pemeraman, dan sebagainya.
Sebelum dilakukan pencelupan maka bahan tekstil harus dilakukan pretreatment terlebih dahulu supaya hasil celup sempurna.
Diantara proses tersebut adalah :
Ø  Singieng : Menghilangkan bulu – bulu yang timbul pada benang atau kain akibat gesekan – gesekan yang terjadi pada proses pertenunan,
Ø  Dezising : Menghilangkan zat – zat kanji yang melapisi permukaan kain atau benang, sehingga dengan hilangnya kanji tersebut penyerapan obat – obat kimia kedalam kain tidak terhalang.
Ø  Scouring : Menghilangkan pectin, lilin, lemak dan kotoran atau debu – debu yang ada pada serat kapas.
Bleaching : Menghilangkan zat – zat pigmen warna dalam serat yang tidak bisa hilang pada saat proses scouring, sehingga warna bahan menjadi lebih putih bersih dan tidak mempengaruhi hasil warna pada saat proses pencelupan dan pemutihan optical.
Mercerizing : Memberikan penampang serat yang lebih bulat dengan melepaskan putaran serat atau reorientasi dari rantai – rantai molekul selulosa menyebabkan deretan kristalin yang lebih sejajar dan teratur.
Proses pewarnaan pada bahan tekstil pada umumnya meliputi proses berikut ini :
a. Pencelupan
b. Pencapan
c. Proses pewarnaan


Proses pencelupan dapat dilakukan pada bahan tekstil baik masih berupa serat, benang ataupun kain. Pencelupan pada serat biasanya dilakukan untuk menghasilkan motif atau komposisi warna .Pencelupan pada benang dilakukan untuk memberi warna pada benang dan jika benang tersebut ditenun akan menghasilkan kain yang memiliki komposisi warna /corak tertentu dari susunan dan persilangan benang lusi dan pakan. Pencelupan pada kain dilakukan untuk mewarnai kain secara merata dengan warna yang sama pada seluruh kain.
Proses pencapan pada bahan tekstil dapat dilakukan pada benang atau kain. Pada proses pencapan diperlukan pasta cap yang terdiri dari zat warna, pengental dan zat zat pembantu yang tergantung pada jenis serat dan jenis zat warna yang digunakan.
Berdasarkan alat atau mesin yang digunakan, pencapan digolongkan sebagai berikut:
l  a. Pencapan semprot (Spray printing)
l  b. Pencapan Blok (Block Printing)
l  c. Pencapan Penotine (penotine printing)
l  d. Pencapan bulu (Flock Printing)
l  e. Pencapan kasa (Screen Printing)
l  f. Pencapan Rotary (Rotary Printing)
l  g. Pencapan Rol (Roller Printing)
l  h. Pencapan transfer (Tranfer printing)
Vickerstaf menyimpulkan bahwa dalam pencelupan terjadi tiga tahap, yaitu :
Tahap pertama merupakan molekul zat warna dalam larutan yang selalu bergerak, pada suhu tinggi gerakan molekul cepat. Kemudian bahan tekstil dimasukkan kedalam larutan celup. Serat tekstil dalam larutan bersifat negatif pada permukaannya sehingga dalam tahap ini terdapat dua kemungkinan yakni molekul zat warna akan tertarik oleh serat atau tertolak menjauhi serat. Oleh karena itu perlu penambahan zat – zat pembantu untuk mendorong zat warna lebih mudah mendekati permukaan serat. Peristiwa tahap pertama tersebut sering disebut difusi zat warna dalam larutan.
Dalam tahap kedua molekul zat warna yang mempunyai tenaga cukup besar dapat mengatasi gaya – gaya tolak dari permukaan serat, sehingga molekul zat warna tersebut dapat terserap menempel pada permukaan serat. Peristiwa ini disebut adsorpsi.
Tahap ketiga yang merupakan bagian yang terpenting dalam pencelupan adalah penetrasi atau difusi zat warna dari permukaan serat kepusat. Tahap ketiga merupakan proses yang paling lambat sehingga dipergunakan sebagai ukuran menentukan kecepatan celup.


D.Tujuan Pencelupan

Dalam pencelupan mempunyai tujuan – tujuan dan sasaran yang hendak dicapai antara lain :
l  Kerataan hasil pencelupan
l  1. Keadaan bahan sebelum celup
l  · Bebas dari minyak
l  · Scouring/ Bleaching yang merata
l  · Hasil merserisasi yang merata
l  · Bahan tidak kusut
l  · Tidak terjadi kostiksasi setempat
l  · Penempatan bahan dalam mesin yang rapi
Zat Warna
l  1.      Klasifikasi Zat Warna
Zat warna dapat digolongkan menurut cara diperolehnya, yaitu zat warna alam dan zat warna sintetik. Berdasarkan sifat pencelupannya, zat warna dapat digolongkan sebagai zat warna substantif, yaitu zat warna yang langsung dapat mewarnai serat dan zat warna ajektif, yaitu zat warna yang memerlukan zat pembantu pokok untuk dapat mewarnai serat. Berdasarkan warna yang ditimbulkan zat warna digongkan menjadi zat warna monogenetik yaitu zat warna yang hanya memberikan arah satu warna dan zat warna poligenetik yaitu zat warna yang memberikan beberapa arah warna. Penggolongan lainnya adalah berdasarkan susunan kimia atau inti zat warna tersebut, yaitu zat warna – nitroso, mordan, belerang, bejana, naftol, dispersi dan reaktif.
 2.      Syarat-syarat Zat Warna
Yang dimaksud dengan zat warna ialah semua zat berwarna yang mempunyai kemampuan untuk dicelupkan pada serat tekstil dan memiliki sifat ketahanan luntur warna (permanent). Jadi sesuatu zat dapat berlaku sebagai zat warna, apabila :
-          Zat warna tersebut mempunyai gugus yang dapat menimbulkan warna(chromofor), misalnya : nitro, nitroso, dan sebagainya.
-          Zat warna tersebut mempunyai gugus yang dapat mempunyai afinitas terhadap serat tekstil auxsochrom misalnya amino, hidroksil dan sebagainya

Pada dasarnya cara pemberian nama suatu zat warna mengandung 3 pengertian pokok, yaitu :
l  a.Nama pokok, yang menunjukkan golongan zat warna dan pabrik pembuatnya, misalnya Procion, adalah zat warna reaktif buatan I.C.I.
l  b.Warna, yang menunjukkan warna dari zat warna tersebut, misalnya Yellow, Red dan sebagainya.
l  c.Satu atau lebih huruf/angka yang menunjukkan arah warna, konsentrasi, mutu atau cara pamakaiannya, misalnya M X R, yang berarti :
l  M – jenis zat warna Procion dingin
l  X – pemakaian dengan cara perendaman (exhaustion)
l  R – arah warna kemerahan
Sumber:
-Lubis, Arifin, S.Teks., dkk. 1998. Teknologi Pencapan Tekstil. Bandung: STTT
-Sunarto. 2008. Teknologi Pencelupan dan Pengecapan Jilid 1 untuk SMK. Jakarta : Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional.
-Teknologi Pencelupan dan Pengecapan Jilid 3 untuk SMK. Jakarta : Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional.
-http : // chem-is try.org



Selasa, 10 September 2013

Apa Itu KIMIA....?????

Pengertian Kimia

Kimia mempelajari komposisi, struktur, dan sifat zat kimia dan transformasi yang dialaminya.

Kimia (dari bahasa Arab ?????? “seni transformasi” dan bahasa Yunani ?????? khemeia “alkimia“) adalah ilmu yang mempelajari mengenai komposisi dan sifat zat atau materi dari skala atom hingga molekul serta perubahan atau transformasi serta interaksi mereka untuk membentuk materi yang ditemukan sehari-hari. Kimia juga mempelajari pemahaman sifat dan interaksi atom individu dengan tujuan untuk menerapkan pengetahuan tersebut pada tingkat makroskopik. Menurut kimia modern, sifat fisik materi umumnya ditentukan oleh struktur pada tingkat atom yang pada gilirannya ditentukan oleh gaya antaratom.


Kimia sering disebut sebagai “ilmu pusat” karena menghubungkan berbagai ilmu lain, seperti fisika, ilmu bahan, nanoteknologi, biologi, farmasi, kedokteran, bioinformatika, dan geologi [1]. Koneksi ini timbul melalui berbagai subdisiplin yang memanfaatkan konsep-konsep dari berbagai disiplin ilmu. Sebagai contoh, kimia fisik melibatkan penerapan prinsip-prinsip fisika terhadap materi pada tingkat atom dan molekul.

Kimia berhubungan dengan interaksi materi yang dapat melibatkan dua zat atau antara materi dan energi, terutama dalam hubungannya dengan hukum pertama termodinamika. Kimia tradisional melibatkan interaksi antara zat kimia dalam reaksi kimia, yang mengubah satu atau lebih zat menjadi satu atau lebih zat lain. Kadang reaksi ini digerakkan oleh pertimbangan entalpi, seperti ketika dua zat berentalpi tinggi seperti hidrogen dan oksigen elemental bereaksi membentuk air, zat dengan entalpi lebih rendah. Reaksi kimia dapat difasilitasi dengan suatu katalis, yang umumnya merupakan zat kimia lain yang terlibat dalam media reaksi tapi tidak dikonsumsi (contohnya adalah asam sulfat yang mengkatalisasi elektrolisis air) atau fenomena immaterial (seperti radiasi elektromagnet dalam reaksi fotokimia). Kimia tradisional juga menangani analisis zat kimia, baik di dalam maupun di luar suatu reaksi, seperti dalam spektroskopi.

Semua materi normal terdiri dari atom atau komponen-komponen subatom yang membentuk atom; proton, elektron, dan neutron. Atom dapat dikombinasikan untuk menghasilkan bentuk materi yang lebih kompleks seperti ion, molekul, atau kristal. Struktur dunia yang kita jalani sehari-hari dan sifat materi yang berinteraksi dengan kita ditentukan oleh sifat zat-zat kimia dan interaksi antar mereka. Baja lebih keras dari besi karena atom-atomnya terikat dalam struktur kristal yang lebih kaku. Kayu terbakar atau mengalami oksidasi cepat karena ia dapat bereaksi secara spontan dengan oksigen pada suatu reaksi kimia jika berada di atas suatu suhu tertentu.

Zat cenderung diklasifikasikan berdasarkan energi, fase, atau komposisi kimianya. Materi dapat digolongkan dalam 4 fase, urutan dari yang memiliki energi paling rendah adalah padat, cair, gas, dan plasma. Dari keempat jenis fase ini, fase plasma hanya dapat ditemui di luar angkasa yang berupa bintang, karena kebutuhan energinya yang teramat besar. Zat padat memiliki struktur tetap pada suhu kamar yang dapat melawan gravitasi atau gaya lemah lain yang mencoba merubahnya. Zat cair memiliki ikatan yang terbatas, tanpa struktur, dan akan mengalir bersama gravitasi. Gas tidak memiliki ikatan dan bertindak sebagai partikel bebas. Sementara itu, plasma hanya terdiri dari ion-ion yang bergerak bebas; pasokan energi yang berlebih mencegah ion-ion ini bersatu menjadi partikel unsur. Satu cara untuk membedakan ketiga fase pertama adalah dengan volume dan bentuknya: kasarnya, zat padat memeliki volume dan bentuk yang tetap, zat cair memiliki volume tetap tapi tanpa bentuk yang tetap, sedangkan gas tidak memiliki baik volume ataupun bentuk yang tetap.

Air (H2O) berbentuk cairan dalam suhu kamar karena molekul-molekulnya terikat oleh gaya antarmolekul yang disebut ikatan Hidrogen. Di sisi lain, hidrogen sulfida (H2S) berbentuk gas pada suhu kamar dan tekanan standar, karena molekul-molekulnya terikat dengan interaksi dwikutub (dipole) yang lebih lemah. Ikatan hidrogen pada air memiliki cukup energi untuk mempertahankan molekul air untuk tidak terpisah satu sama lain, tapi tidak untuk mengalir, yang menjadikannya berwujud cairan dalam suhu antara 0 °C sampai 100 °C pada permukaan laut. Menurunkan suhu atau energi lebih lanjut mengizinkan organisasi bentuk yang lebih erat, menghasilkan suatu zat padat, dan melepaskan energi. Peningkatan energi akan mencairkan es walaupun suhu tidak akan berubah sampai semua es cair. Peningkatan suhu air pada gilirannya akan menyebabkannya mendidih (lihat panas penguapan) sewaktu terdapat cukup energi untuk mengatasi gaya tarik antarmolekul dan selanjutnya memungkinkan molekul untuk bergerak menjauhi satu sama lain.

Ilmuwan yang mempelajari kimia sering disebut kimiawan. Sebagian besar kimiawan melakukan spesialisasi dalam satu atau lebih subdisiplin. Kimia yang diajarkan pada sekolah menengah sering disebut “kimia umum” dan ditujukan sebagai pengantar terhadap banyak konsep-konsep dasar dan untuk memberikan pelajar alat untuk melanjutkan ke subjek lanjutannya. Banyak konsep yang dipresentasikan pada tingkat ini sering dianggap tak lengkap dan tidak akurat secara teknis. Walaupun demikian, hal tersebut merupakan alat yang luar biasa. Kimiawan secara reguler menggunakan alat dan penjelasan yang sederhana dan elegan ini dalam karya mereka, karena terbukti mampu secara akurat membuat model reaktivitas kimia yang sangat bervariasi.

Ilmu kimia secara sejarah merupakan pengembangan baru, tapi ilmu ini berakar pada alkimia yang telah dipraktikkan selama berabad-abad di seantero dunia.


Sejarah


Robert Boyle, perintis kimia modern dengan menggunakan eksperimen terkontrol, sebagai kontras dari metode alkimia terdahulu.Akar ilmu kimia dapat dilacak hingga fenomena pembakaran. Api merupakan kekuatan mistik yang mengubah suatu zat menjadi zat lain dan karenanya merupakan perhatian utama umat manusia. Adalah api yang menuntun manusia pada penemuan besi dan gelas. Setelah emas ditemukan dan menjadi logam berharga, banyak orang yang tertarik menemukan metode yang dapat merubah zat lain menjadi emas. Hal ini menciptakan suatu protosains yang disebut Alkimia. Alkimia dipraktikkan oleh banyak kebudayaan sepanjang sejarah dan sering mengandung campuran filsafat, mistisisme, dan protosains.

Alkimiawan menemukan banyak proses kimia yang menuntun pada pengembangan kimia modern. Seiring berjalannya sejarah, alkimiawan-alkimiawan terkemuka (terutama Abu Musa Jabir bin Hayyan dan Paracelsus) mengembangkan alkimia menjauh dari filsafat dan mistisisme dan mengembangkan pendekatan yang lebih sistematik dan ilmiah. Alkimiawan pertama yang dianggap menerapkan metode ilmiah terhadap alkimia dan membedakan kimia dan alkimia adalah Robert Boyle (1627–1691). Walaupun demikian, kimia seperti yang kita ketahui sekarang diciptakan oleh Antoine Lavoisier dengan hukum kekekalan massanya pada tahun 1783. Penemuan unsur kimia memiliki sejarah yang panjang yang mencapai puncaknya dengan diciptakannya tabel periodik unsur kimia oleh Dmitri Mendeleyev pada tahun 1869.

Penghargaan Nobel dalam Kimia yang diciptakan pada tahun 1901 memberikan gambaran bagus mengenai penemuan kimia selama 100 tahun terakhir. Pada bagian awal abad ke-20, sifat subatomik atom diungkapkan dan ilmu mekanika kuantum mulai menjelaskan sifat fisik ikatan kimia. Pada pertengahan abad ke-20, kimia telah berkembang sampai dapat memahami dan memprediksi aspek-aspek biologi yang melebar ke bidang biokimia.

Industri kimia mewakili suatu aktivitas ekonomi yang penting. Pada tahun 2004, produsen bahan kimia 50 teratas global memiliki penjualan mencapai 587 bilyun dolar AS dengan margin keuntungan 8,1% dan pengeluaran riset dan pengembangan 2,1% dari total penjualan.


Cabang ilmu kimia


Kimia umumnya dibagi menjadi beberapa bidang utama. Terdapat pula beberapa cabang antar-bidang dan cabang-cabang yang lebih khusus dalam kimia.

Kimia analitik adalah analisis cuplikan bahan untuk memperoleh pemahaman tentang susunan kimia dan strukturnya. Kimia analitik melibatkan metode eksperimen standar dalam kimia. Metode-metode ini dapat digunakan dalam semua subdisiplin lain dari kimia, kecuali untuk kimia teori murni.

Biokimia mempelajari senyawa kimia, reaksi kimia, dan interaksi kimia yang terjadi dalam organisme hidup. Biokimia dan kimia organik berhubungan sangat erat, seperti dalam kimia medisinal atau neurokimia. Biokimia juga berhubungan dengan biologi molekular, fisiologi, dan genetika.

Kimia anorganik mengkaji sifat-sifat dan reaksi senyawa anorganik. Perbedaan antara bidang organik dan anorganik tidaklah mutlak dan banyak terdapat tumpang tindih, khususnya dalam bidang kimia organologam.

Kimia organik mengkaji struktur, sifat, komposisi, mekanisme, dan reaksi senyawa organik. Suatu senyawa organik didefinisikan sebagai segala senyawa yang berdasarkan rantai karbon.

Kimia fisik mengkaji dasar fisik sistem dan proses kimia, khususnya energitika dan dinamika sistem dan proses tersebut. Bidang-bidang penting dalam kajian ini di antaranya termodinamika kimia, kinetika kimia, elektrokimia, mekanika statistika, dan spektroskopi. Kimia fisik memiliki banyak tumpang tindih dengan fisika molekular. Kimia fisik melibatkan penggunaan kalkulus untuk menurunkan persamaan, dan biasanya berhubungan dengan kimia kuantum serta kimia teori.

Kimia teori adalah studi kimia melalui penjabaran teori dasar (biasanya dalam matematika atau fisika). Secara spesifik, penerapan mekanika kuantum dalam kimia disebut kimia kuantum. Sejak akhir Perang Dunia II, perkembangan komputer telah memfasilitasi pengembangan sistematik kimia komputasi, yang merupakan seni pengembangan dan penerapan program komputer untuk menyelesaikan permasalahan kimia. Kimia teori memiliki banyak tumpang tindih (secara teori dan eksperimen) dengan fisika benda kondensi dan fisika molekular.

Kimia nuklir mengkaji bagaimana partikel subatom bergabung dan membentuk inti. Transmutasi modern adalah bagian terbesar dari kimia nuklir dan tabel nuklida merupakan hasil sekaligus perangkat untuk bidang ini.

Bidang lain antara lain adalah astrokimia, biologi molekular, elektrokimia, farmakologi, fitokimia, fotokimia, genetika molekular, geokimia, ilmu bahan, kimia aliran, kimia atmosfer, kimia benda padat, kimia hijau, kimia inti, kimia medisinal, kimia komputasi, kimia lingkungan, kimia organologam, kimia permukaan, kimia polimer, kimia supramolekular, nanoteknologi, petrokimia, sejarah kimia, sonokimia, teknik kimia, serta termokimia.


Konsep dasar


Tatanama
Tatanama kimia merujuk pada sistem penamaan senyawa kimia. Telah dibuat sistem penamaan spesies kimia yang terdefinisi dengan baik. Senyawa organik diberi nama menurut sistem tatanama organik. Senyawa anorganik dinamai menurut sistem tatanama anorganik.

Atom
Atom adalah suatu kumpulan materi yang terdiri atas inti yang bermuatan positif, yang biasanya mengandung proton dan neutron, dan beberapa elektron di sekitarnya yang mengimbangi muatan positif inti. Atom juga merupakan satuan terkecil yang dapat diuraikan dari suatu unsur dan masih mempertahankan sifatnya, terbentuk dari inti yang rapat dan bermuatan positif dikelilingi oleh suatu sistem elektron.

Unsur
Unsur adalah sekelompok atom yang memiliki jumlah proton yang sama pada intinya. Jumlah ini disebut sebagai nomor atom unsur. Sebagai contoh, semua atom yang memiliki 6 proton pada intinya adalah atom dari unsur kimia karbon, dan semua atom yang memiliki 92 proton pada intinya adalah atom unsur uranium.
Tampilan unsur-unsur yang paling pas adalah dalam tabel periodik, yang mengelompokkan unsur-unsur berdasarkan kemiripan sifat kimianya. Daftar unsur berdasarkan nama, lambang, dan nomor atom juga tersedia.

Ion
Ion atau spesies bermuatan, atau suatu atom atau molekul yang kehilangan atau mendapatkan satu atau lebih elektron. Kation bermuatan positif (misalnya kation natrium Na+) dan anion bermuatan negatif (misalnya klorida Cl?) dapat membentuk garam netral (misalnya natrium klorida, NaCl). Contoh ion poliatom yang tidak terpecah sewaktu reaksi asam-basa adalah hidroksida (OH?) dan fosfat (PO43?).

Senyawa
Senyawa merupakan suatu zat yang dibentuk oleh dua atau lebih unsur dengan perbandingan tetap yang menentukan susunannya. Sebagia contoh, air merupakan senyawa yang mengandung hidrogen dan oksigen dengan perbandingan dua terhadap satu. Senyawa dibentuk dan diuraikan oleh reaksi kimia.

Molekul
Molekul adalah bagian terkecil dan tidak terpecah dari suatu senyawa kimia murni yang masih mempertahankan sifat kimia dan fisik yang unik. Suatu molekul terdiri dari dua atau lebih atom yang terikat satu sama lain.

Zat kimia
Suatu zat kimia dapat berupa suatu unsur, senyawa, atau campuran senyawa-senyawa, unsur-unsur, atau senyawa dan unsur. Sebagian besar materi yang kita temukan dalam kehidupan sehari-hari merupakan suatu bentuk campuran, misalnya air, aloy, biomassa, dll.

Ikatan kimia
Ikatan kimia merupakan gaya yang menahan berkumpulnya atom-atom dalam molekul atau kristal. Pada banyak senyawa sederhana, teori ikatan valensi dan konsep bilangan oksidasi dapat digunakan untuk menduga struktur molekular dan susunannya. Serupa dengan ini, teori-teori dari fisika klasik dapat digunakan untuk menduga banyak dari struktur ionik. Pada senyawa yang lebih kompleks/rumit, seperti kompleks logam, teori ikatan valensi tidak dapat digunakan karena membutuhken pemahaman yang lebih dalam dengan basis mekanika kuantum.

Wujud zat
Fase adalah kumpulan keadaan sebuah sistem fisik makroskopis yang relatif serbasama baik itu komposisi kimianya maupun sifat-sifat fisikanya (misalnya masa jenis, struktur kristal, indeks refraksi, dan lain sebagainya). Contoh keadaan fase yang kita kenal adalah padatan, cair, dan gas. Keadaan fase yang lain yang misalnya plasma, kondensasi Bose-Einstein, dan kondensasi Fermion. Keadaan fase dari material magnetik adalah paramagnetik, feromagnetik dan diamagnetik.

Reaksi kimia
Reaksi kimia adalah transformasi/perubahan dalam struktur molekul. Reaksi ini bisa menghasilkan penggabungan molekul membentuk molekul yang lebih besar, pembelahan molekul menjadi dua atau lebih molekul yang lebih kecil, atau penataulangan atom-atom dalam molekul. Reaksi kimia selalu melibatkan terbentuk atau terputusnya ikatan kimia.


Kimia kuantum


Kimia kuantum secara matematis menjelakan kelakuan dasar materi pada tingkat molekul. Secara prinsip, dimungkinkan untuk menjelaskan semua sistem kimia dengan menggunakan teori ini. Dalam praktiknya, hanya sistem kimia paling sederhana yang dapat secara realistis di investigasi dengan mekanika kuantum murni, dan harus dilakukan hampiran untuk sebagian besar tujuan praktis (misalnya, Hartree-Fock, Post-Hartree-Fock, atau density functional theory, lihat kimia komputasi untuk detilnya). Karenanya, pemahaman mendalam mekanika kuantum tidak diperlukan bagi sebagian besar bidang kimia, karena implikasi penting dari teori (terutama hampiran orbital) dapat dipahami dan diterapkan dengan lebih sederhana.

Dalam mekanika kuantum (beberapa penerapan dalam kimia komputasi dan kimia kuantum), Hamiltonan, atau keadaan fisik, dari partikel dapat dinyatakan sebagai penjumlahan dua operator, satu berhubungan dengan energi kinetik dan satunya dengan energi potensial. Hamiltonan dalam persamaan gelombang Schrödinger yang digunakan dalam kimia kuantum tidak memiliki terminologi bagi putaran elektron.
Penyelesaian persamaan Schrödinger untuk atom hidrogen memberikan bentuk persamaan gelombang untuk orbital atom, dan energi relatif dari orbital 1s, 2s, 2p, dan 3p. Hampiran orbital dapat digunakan untuk memahami atom lainnya seperti helium, litium, dan karbon.


Hukum kimia


Hukum-hukum kimia sebenarnya merupakan hukum fisika yang diterapkan dalam sistem kimia. Konsep yang paling mendasar dalam kimia adalah Hukum kekekalan massa yang
menyatakan bahwa tidak ada perubahan jumlah zat yang terukur pada saat reaksi kimia biasa. Fisika modern menunjukkan bahwa sebenarnya energilah yang kekal, dan bahwa energi dan massa saling berkaitan. Kekekalan energi ini mengarahkan kepada pentingnya konsep kesetimbangan, termodinamika, dan kinetika.